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Abstract 

Network logging is used to monitor computer systems for potential problems and 

threats by network administrators.  Research has found that the more logging enabled, the 

more potential threats can be detected in the logs (Levoy, 2006).  However, generally it is 

considered too costly to dedicate the manpower required to analyze the amount of 

logging data that it is possible to generate.  Current research is working on different 

correlation and parsing techniques to help filter the data, but these methods function by 

having all of the data dumped in to a central repository.  Central repositories are limited 

in the amount of data they are able to receive without losing some of the data 

(SolarWindows, 2009).  In large networks, the data limit is a problem, and industry 

standard syslog protocols could potentially lose data without being aware of the loss, 

potentially handicapping network administrators in their ability to analyze network 

problems and discover security risks. 

This research provides a scalable, accessible and fault-tolerant logging 

infrastructure that resolves the centralized server bottleneck and data loss problem while 

still maintaining a searchable and efficient storage system. 
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A DISTRIBUTED NETWORK LOGGING TOPOLOGY 

 

 

 

1.  Introduction 

Logging is a part of computer systems.  Any administrator that has spent any time 

looking at logs is probably aware of two things:  There are useful pieces of information in 

the logs, and it is normally not worth the time to try to find the useful information.  The 

large quantities of data generated is one reason that log consolidation tools and log 

analyzers that help filter out some of the uninteresting information are currently 

significant research areas (Fu, Lou, Wang, & Li, 2009)(Halonen, Miettinen, & Hatonen, 

2009).   

Current research has shown that information on end user workstations can be used 

to help detect threats to the network (Levoy, 2006).  Often, organizations set up a 

centralized server to capture log information from clients.  However, a central log server 

solution could very quickly be overwhelmed by requiring all workstations report all 

logged system events to a central server.  The bottleneck of communication with the 

central server must be addressed in systems that monitor the logs of an entire network in 

order for them to be effective. 

This research develops a system where the work of maintaining external copies of 

logs is performed without any individual machine becoming a bottleneck for the log 

traffic.  The structure of the system is scalable because the amount of work and traffic 

that a machine has to process does not depend on the network size. 
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Since the logs are stored on standard client machines which may sometimes be 

unavailable, the system is designed to ensure that log entries are stored in multiple 

locations.  This reduces the chances of all of the copies of a log being simultaneously 

offline when they need to be accessed. 

A method of searching the logs of the entire network is provided so that the data 

is easily accessible, and so that all of the responses take the same amount of work to be 

transmitted to the searching machine 

The solution organizes machines in to small peer groups for log distribution and 

replication and arranges the peer groups in to a tree to provide an efficient method of 

searching the logs.  It is designed so that all machines in a peer group are equivalent and 

all peer groups (except for the root) are equivalent 

The thesis is organized into five chapters including this one.   Chapter 2 is a 

literature review that covers related research in similar areas and provides historical 

information on the subject.  Next, Chapter 3 provides details for the log protocol and the 

experiments to test it.  Chapter 4 presents the results of the experiments and discusses 

how the system performed.  Chapter 5 summarizes the results and discusses what areas 

could be expanded in future work. 
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2. Literature Review 

2.1. Overview 

This chapter provides information on computer security and the threats against 

that security.  Section 2.2 will focus on computer and information security and discuss 

some of the tradeoffs associated with making a system more secure.  It will then discuss 

some of the threats against information systems and highlight the insider threat.  Section 

2.3 will provide a definition of insider threat and then describes some of the history 

behind it and various detection methods.  Section 2.4 discusses detection methods and 

specifically the usefulness of auditing and logging.  Section 2.5 discusses various peer-to-

peer protocols that could be applied to network logging. 

2.2. Security 

Computer security has been a focus since the first worm appeared and shocked 

the internet in 1988 (Spafford, 1989).  Since then many advances have been made in the 

realm of computer security, and computer security can still be condensed in to three basic 

goals. 
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2.2.1. Goals of Computer Security 

 Computer security consist of three goals often referred to as the “CIA” 

model.  The anagram CIA comes from the first letter of the three goals: Confidentiality, 

Integrity and Availability (Federal Information Security Management Act, 2002).  The 

Federal Information Security Management Act of 2002 (FISMA) defined the goals for 

use by government agencies.  FISMA defines Confidentiality as “preserving authorized 

restrictions on access and disclosure, including means for protecting personal privacy and 

proprietary information.”  Integrity is defined as “guarding against improper information 

modification or destruction, and includes ensuring information nonrepudiation and 

authenticity.”  Availability is defined as “ensuring timely and reliable access to and use 

of information (Federal Information Security Management Act, 2002).”   

Though those three goals were codified by Congress in 2002, they have existed 

for much longer.  In fact the National Security Telecommunications and Information 

Systems Security Committee released an advisory memorandum on the threat from 

insiders to government networks in 1999 that mentioned using the CIA model as a 

baseline for developing ways to judge computer security methods (Hayden, 1999).  The 

CIA model is based on the idea of authorization.  Under the model there is information, 

and there are people accessing the information.  The people accessing the information are 

authorized to do so, otherwise a breach in security has occurred (Denning, 1999). 
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2.2.1.1. Confidentiality 

 Confidentiality as defined above is simplified to fundamentally mean the 

information is available on a “need-to-know” basis.  For example, when a customer calls 

a phone company about their service, the phone company generally asks the customer to 

prove who they are by answering personal questions.  This proves to the phone company 

that the person is the owner of the account and has access to the confidential account 

information.  Anytime there is a situation dealing with financial or medical matters basic 

measures are taken to ensure the confidentiality of data.  Breaches of confidentiality have 

been happening to approximately 9% of the respondents of an annual computer crime 

survey for the last five years (Richardson, 2008).  When organizations have laptops with 

sensitive data stolen, or backups taken from someone’s car; these are examples of a 

physical breach of confidentiality.  With the exception of having physical devices stolen, 

in a computer system confidentiality is often enforced via permissions on files and login 

credentials which will either allow or deny access to sensitive information based on who 

a user told the system that they are. 

2.2.1.2. Integrity 

 Integrity deals with making sure that the data is accurate and not modified 

without authorization.  Many areas depend on integrity and one primary example is a 

police investigation.  All evidence in a police investigation must be forensically sound.  

That is that the integrity of the evidence must not be in question.  If the evidence is a 

computer hard drive, investigators must be able to show that they did not modify the files 



 

6 

on the drive to get the evidence.  When threats against a network are realized, often the 

threat will attempt to modify system logs or files to hide the fact that they have been there 

(Hayden, 1999).  If a user can modify the system to remove all traces of their presence on 

the system then the integrity of the system and potentially the data it contains has been 

compromised. 

2.2.1.3. Availability 

Availability refers to the ability of people who are authorized to access and use 

information in a timely manner.  There are many threats against availability and some of 

them have no mitigation strategies.  If an earthquake or other natural disaster destroys the 

power infrastructure to an information system, then even if the data is still intact, it is not 

available to the people who need it and in a general sense, the security of the system is 

compromised.  Another common threat to availability is a Denial of Service (DOS) attack 

which aims to consume or disable resources on a server in order to prevent normal access 

of services. 

2.2.2. Impact on Usability 

 It is generally accepted that there is a tradeoff between computer security 

and usability.  Security researcher Dorothy Denning wrote “the only way to make a 

computer system secure is to pull the plug (Denning, 1999).”  She recognizes that the 

goal of information is not to deny access, but to instead permit authorized access, 
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however there is a difference between writing a policy to define who has access, and then 

implementing and enforcing such a policy on a computer system.     

2.2.3. Types of Threats 

There are three main threats to a network: Natural, External, and Internal.  There 

is little that can be done to protect an information system from natural threats such as 

storms, earthquakes, or other natural disasters aside from housing backup systems at 

contingency locations.  Therefore, for the purpose of this research, natural threats to 

information systems will not be focused on.  The next threat, external, is essentially 

focused on hackers, competitors, or foreign agents that are working from outside a 

network with only publically available information.  These threats are up against an 

organization’s largest defenses, because most organizations spend most of the 

information security budget to protect from external sources (Mills, Peterson, & 

Grimaila, 2009).  This research assumes there are other measures in place to protect from 

and defend against external threats, however if an external threat gains access to the 

network it is possible that they could then be considered an internal threat.  There are 

additional external defense methods that could detect them, but once they have penetrated 

the organizations defenses, they may begin to act as an insider would.  Internal threats are 

generally considered to be the greatest risk to information systems (Mills et al., 2009).  

Internal threats come from “insiders” who are generally current or former employees or 

business partners who have detailed information or have/had authorization to access 

information not generally available to the public (Greitzer et al., 2008).  Internal 
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compromises are normally less frequent that external compromises, but due to the 

elevated level of trust, often have a significantly higher damage cost (Mills et al., 2009).   

2.3. Insider Threat 

 Frank Greitzer from Pacific Northwest National Laboratory states that an 

insider “is an individual currently or at one time authorized to access an organization’s 

information system, data, or network” (Greitzer et al., 2008).  While the National 

Security Telecommunications and Information Systems Security Committee (NSTISSC) 

said in their Advisory Memorandum 1-99 that “Insiders can be employees, contractors, 

service providers, or anyone with legitimate access to a system.”  There are many 

variations in the precise definition, but the major points: authorized access, and 

possession of knowledge not publically available are generally agreed on.  It is worth 

noting that insider threats are not always intentional.  Users who may just have a goal of 

making it easier to do their job may do such things as installing shareware, disabling 

virus protection, or using unapproved storage devices; and those actions may provide an 

external threat with access to the network (Hayden, 1999). 

2.3.1 Historical Insider Threat Information 

 The insider threat problem has been around for a long time.  Mills 

acknowledges that insider incidents are often unknown or go unreported, however there 

are published events of insider issues relating to government networks dating back to 
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1988 when a Libyan intelligence agent was able to access information on government 

employee car pool information through his wife’s employer (Hayden, 1999).  Common 

places where insiders misuse information or job resources are hospitals and government 

databases where sometimes the insider simply wanted to see what treatment a celebrity 

was receiving, or how much their family was paying in taxes (Hayden, 1999).  It is clear 

that the insider threat has been around for a while, and thanks to recent surveys, 

organizations are beginning to notice problems with insiders and do something about 

them (Richardson, 2008). 

2.3.2 Insider Identification 

Preventing insiders from causing problems would be ideal, but since preventing 

everyone who works for an organization from ever doing anything wrong is unrealistic; 

the focus goes to identifying when the behavior has changed as quickly as possible, and 

helping the organization to understand the damage and respond.  In the historical cases 

presented by the NSTISSC, most of them were identified when looking back at audit logs 

(Hayden, 1999).  Levoy developed a methodology to tune the logs of a stand-alone 

Windows XP workstation in order to identify a set of cases he determined would simulate  

insider actions while minimizing the amount of logging that an administrator would have 

to look through (Levoy, 2006).  It is generally accepted that to identify insiders, 

“observables” must be documented, and if possible correlated (Mills et al., 

2009)(Hayden, 1999).   
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Levoy’s work was one of the first of its kind in aiming to optimize a computer log 

for detecting insider threats.  His work was groundbreaking, but limited in that it only 

analyzes a single source of information, and requires an administrator to predetermine 

what threats their network faces.   

2.4. Auditing and Logging 

According to a SANS Institute survey on logs, most organizations that collect 

audit logs use them for detecting and analyzing security and performance incidents, and 

almost half the organizations use their logs for some kind of standards compliance 

reporting (Gordon, Loeb, Lucyshyn, & Richardson, 2006).   Logs can provide the 

information that is used to assess and test a network, identify areas that need repairs, or 

identify and stop an intrusion (Shenk, 2008).  Logs also can track individual 

accountability or help construct a timeline when an event happens on a network (Ma & 

Tsudik, 2009). 

2.4.1. Current Use of Logging 

Logs were originally developed for programmers and system administrators to 

debug systems and applications (Peisert, Bishop, & Marzullo, 2008).  Today most 

systems have at least three parts: the generator, the log subsystem and the archival 

system.  The first is where the event is generated.  This can be a program running on the 

system, or debug code in the kernel of the operating system.  This is where the event 
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actually occurred and makes a local call on the system to send the information to the 

logging subsystem.  The logging subsystem handles the logs and sends them to the 

archival subsystem.  In networked systems, the archival system might be a centralized log 

server and so the log subsystem must transmit the event across the network infrastructure 

or queue the events if the network is non functional.  The archival system is designed to 

receive messages and write them to disk.  Ideally this is done in a method that is 

forensically sound, however most current methods do not provide the kind of forensic 

integrity required of legal evidence (Monteiro & Erbacher, 2008). 

2.4.2. Logging Best Practices 

For logs to be less confusing and of the greatest benefit to an organization, they 

should have three main characteristics: A synchronized time stamp, a sufficient level of 

detail to identify what event occured, and sufficient archival logs to get more information 

if required (GadAllah, 2004).  The time stamp is most important when networked 

systems are involved because most systems put the time stamp on the logs when the 

event is created, not when it is archived.  If events are being correlated between different 

machines and the times on the machines are different, it can be difficult to link events 

between the machines.  Sufficient detail is required, because knowing that an event 

happened is not always enough.  For example, if a user “Joe” logs in to a machine and a 

“login” event is recorded, the event is useless for later analysis unless we know WHO 

logged on and WHERE they logged on.  The archival information is important because in 

the example above if the user logged on to a system and performed an action that he 
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should not, it might be useful to see that fifteen minutes previously, Joe logged in from 

Texas, and the logon where policy was violated logged in from China (GadAllah, 2004). 

Logs are primarily used for security and performance analysis, but depending on 

the industry, policy compliance can drive the logging policy.  Half of SANS’s survey 

respondents did say that the retention policy was driven by standards compliance (Shenk, 

2008).  One problem with logs is that they are not usually secure.  Ideally if a log server 

(or any machine with logs) is compromised, the attacker would be unable to modify or 

read logs that were created before the machine was compromised.  However, Schneier 

points out that “no security measure can protect the audit log entries written after an 

attacker has gained control of [the system]“ (Schneier & Kelsey, 1999). 

2.5 Peer-to-Peer Networks 

Peer-to-peer networks allow the distribution of network functions and storage so 

that in effect the storage and function of the network is in the network cloud and no 

longer dependent on individual machines. There are many different peer-to-peer 

protocols in existence, but some popular ones are GNUTella, KaZaA and BitTorrent 

(Karrels, Peterson, & Mullins, 2009).  Peer-to-peer systems are a method of storing, 

retrieving or streaming data in a distributed way, and could potentially be applied to logs. 

The main difference among the current generation of peer-to-peer technologies is 

the structure of the network.  Initial networks used a method of broadcasting queries to all 

peers that ended up scaling poorly (Karrels et al., 2009).  Newer protocols such as KaZaA 
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and GNUTella use a topology where an election process is used to establish super nodes 

in the network and those supernodes provide a second level of organization that helps 

keep searching and content location more efficient (Frankel & Pepper, 2008; Leibowitz, 

Ripeanu, & Wierzbicki, 2003).  

BitTorrent is setup for cooperative distribution of large files.  It works by splitting 

a file in to pieces and then allowing anyone who has a piece of a file to send it to the 

machine trying to download it.  The machines get in touch with each other via a “tracker” 

which is a machine that maintains a list who is currently downloading or uploading the 

file.  When a file is being downloaded, the tracker will give the downloader a partial list 

of the machines it should contact to download pieces (Cohen, 2003).  

 

One complexity of optimizing network logging is that content flow traditionally 

runs in the opposite direction from a normal client-server architecture.  In a normal 

architecture, the server has content and it is generally being pulled to the clients.  In a 

traditional logging task, clients are creating content and sending it to the server.  When 

looking at distributing these log files, neither peer-to-peer nor content delivery networks 

are designed to handle this reverse flow.  

Peer-to-peer networks are so prevalent today because of their ability to scale and 

function in an extremely large network with an unstable population with minimal central 

architecture (Androutsellis-Theotokis & Spinellis, 2004).  One of the biggest costs in 

peer-to-peer networks is the routing tables, and the tradeoff between table size and how 

many messages must be sent to find files on the network (Androutsellis-Theotokis & 
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Spinellis, 2004). At their simplest form, peer-to-peer networks and applications are 

designed to utilize the resources from the network that would otherwise be unused 

(Androutsellis-Theotokis & Spinellis, 2004). 

Content Delivery Networks (CDN) are designed to be a set of distributed servers 

that dynamically allocate users to a closer, and preferably less utilized server than the 

primary server hosting the content (Pallis & Vakali, 2006).  Recent approaches have 

begun to create a hybrid between CDN and peer to peer networks.  They hope to take 

some of the advantages in peer-to-peer networks such as the scalability and fault-

tolerance and overcome the weaknesses such as the performance being dependent on 

number of peers to create a more efficient system (Jiang, Li, Li, & Bai, 2008).  One of the 

methods used to redirect users to a closer server involves DNS redirection, which allows 

for a client to be redirected from the beginning of their communication with a server, and 

is often used as a form of load balancing (Krishnamurthy, Wills, & Zhang, 2001).  One 

use of a CDN type network is to use multiple central tracker’s for the BitTorrent protocol 

so that if trackers fail, the service will still be usable (Li, 2008).   

A hybrid based on the CDN and P2P technology should make a flexible and 

scalable network, but in order to apply the technology to network logging, the fact that 

content flows from client to server needs to be addressed. 
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3.  Methodology 

This chapter discusses the methodology that will be used to test distributing 

network logs across all machines in the network to add scalability to the logging 

infrastructure.  Section 3.1 discusses some of the challenges with distributing network 

logs and the desired characteristics of a solution.  Section 3.2 discusses the details of the 

proposed solution and the various operations that machines must support.  Section 3.3 

discusses how the system will be simulated and the various scenarios that will be tested.  

Section 3.4 discusses what data has to be collected from the simulations and how the 

system will be evaluated. 

3.1.  Problem Description 

In order to ensure that every log entry is stored and replicated in a place other than 

the machine that generates it, some level of organization is required to prevent the 

logging infrastructures from becoming a fully meshed topology where every machine is 

transmitting to every other machine.  A fully meshed topology would result in every 

machine being unable to handle the log entries it receives.  One of the challenges is that 

every machine is generating a continuous stream of unique entries to be stored.  This 

chapter presents a solution to distributing network logs using peer-to-peer topologies.  

Using peer-to-peer techniques is ideal because they provide scalability and allow 
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machines that are generating logs to share the workload for storing and distributing the 

logs. 

3.1.2.  Desired Characteristics of a Solution 

An ideal solution to the problem would have several desirable qualities.  First, it 

should be designed so that it does not require significant processing power from 

individual machines.  Since the solution would be running on end user equipment and not 

just dedicated servers, it must not prevent the machines from being used for their primary 

purpose.  Second, the log entries must be available when needed.  One of the problems 

with running logging infrastructure on a system that is not dedicated to that purpose is 

that it may not be online when you need information that is stored on that node.  An ideal 

system will address nodes being unavailable by ensuring that the probability of data 

being unavailable is low.  Third, the amount of work that a machine in the network does 

should be approximately equal to any other machine on the network, and should be 

independent of the total number of machines on the network.  Fourth, an ideal system 

will minimize the time and number of machines that must be communicated with to 

search the system.  If a proposed system requires the machines making a query to probe 

every machine on the network, then searching the logs will not be efficient and even 

though the logs may be distributed efficiently and redundantly, accessing the logs will not 

be efficient enough to allow retrieving the logs. 
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3.2.  Solution: A Tree of Peer Groups 

The solution to the problem is a tree structure that is made up of peer groups of 

machines.  Each peer group is a set number of machines that work to ensure that every 

machine has a record of all the log entries from every machines in the peer group.  The 

peer groups are organized in to a tree so that there is an efficient method to perform 

network-wide searches for log entries.  An example of this topology is shown in Figure 1. 

 

Figure 1:Topology with peer groups represented by circles and an expanded view of peer 

group communication in the large circle. 

 

The solution involves organizing all of the machines generating logs into peer 

groups of a set size and having the organization of the peer groups be represented by a 
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tree that allows searches.  The number of “backups” of log entries is equal to the size of 

the peer group (which is configurable).  If there are four machines in a peer group, then 

there will always be at least four copies of every log entry made by a machine in that peer 

group.   

In order for the topology to work, there are several operations that must be 

defined and implemented.  These operations are divided in to two different categories: 

Tree/Peer Group operations and Peer Group/Machine operations.  The Tree/Peer Group 

operations operate at a level above the individual machine level, and any time 

communication with a peer group must occur, one machine in that peer group is selected 

in a manner to ensure that each machine in the peer group is responsible for an equal 

portion of the different messages.  One method to balance which machine is doing the 

communication would be to use a uniform distribution random number generator to select 

the leader each time.  Any time a peer group is talked to, one machine is going to handle 

the communication, but after the message is passed, most events will require notifying 

the rest of the peer group so that any state information for the peer group is kept in sync 

between the peer group members.   

The operations that are supported are: 

 Finding the root 

 Adding machines to the network 

 Adding peer groups to the network 

 Removing machines from the network 

 Removing peer groups from the network 

 Distributing the logs 

 Searching the log 

These operations are described in detail in the following sections.   
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In order to specify the proposed solution, several variables are defined to 

represent different parameters of the protocol and the network.  These variables are 

detailed in Table 1. 

Table 1 Protocol Variables 

 Total Number of Machines on the Network Integer 

 Minimum Peer Group Size Integer 

 Peer Group Buffer Percentage Float 

 Rate of Messages Generated by Machines Float 

 Time a Machine can be Offline and still Remain in a Peer 

Group 

Integer 

 Time a Machine can not respond before starting the 

 

Integer 

 Minimum Peer Group Size  Integer 

 Maximum Peer Group Size  Integer 

 Number of Peer Groups in the Network (measured) Integer 
 

3.2.1.1.  Finding the Root 

In order for the machines to join the network and to support the operations below, 

machines need to be able to find the root peer group.  Since machines in the root peer 

group end up doing more work than other peer groups, machines are cycled out as 

explained in Algorithm 2.  To support the node cycling at the root, there are two different 

methods presented that would ensure a machine in the root can always be found.  The 

first is to have a dedicated machine that stays in the root and handles all root requests.  

This would be effective, but implies a single point of failure for tree based operations that 

need to find the root.  A more robust solution is to use a “fast-flux” type Domain Name 

System (DNS) configuration to ensure that an entry for the tree root resolves to the 

machines that are currently in the root peer group and does not allow caching of the result 
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(Holz, Gorecki, Rieck, & Freiling, 2008).  As machines leave the root peer group, they 

would be removed from the DNS revolver rotation.  This allows any machine on the 

network to find machines in the root peer group with a DNS lookup.   

3.2.1.2.  Adding Machines 

For a machine to be added to the network, the joiner will perform the operations 

in Algorithm 1: 

Algorithm 1  Join_Network Pseudocode   

1. Procedure Join_Network 

2.  Begin 

3.  Joining machine (J) looks up a member of the root peer group (Rm). 

4.  J sends a request to join the logging network to Rm. 

5.  Rm sends the root peer group information to J. 

//Information includes the member list, growth flag and children information. 

6.  Rm tells the other root members that J is a new member. 

7.  Root PG performs a log redistribution (See Algorithm 8) 

8.  If the root peer group has 2n or greater members Then 

9.   Perform Algorithm 2 

10.  End If 

11.  End Procedure Join_Network 

 

Algorithm 1 grows the root peer group and allows for members to join the logging 

network quickly.  The root peer group is the only peer group that grows in size as time 

progresses.  Once the root peer group has grown to  members, it creates a new peer 

group and inserts it in to the tree according to the steps in Algorithm 2: 
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Algorithm 2  Create_Peer_Group Pseudocode   

1. Procedure Create_Peer_Group 

2.  Begin 

3.  Rm from Algorithm 1 adds a member to the root peer group 

4.  The root peer group is now  members. 

5.  Rm sends a message to all root members identifying the n oldest members. 

6.  The n oldest members are moved to a new peer group and passed down the tree  

  according to Algorithm 3. 

7.  The remaining members are identified as the root peer group. 

8.  End Procedure Create_Peer_Group 

 

In order to keep the tree balanced as peer groups are removed and added, each 

peer group has two children and a flag to know if the last time it performed an insertion it 

sent the peer group to the left or right.  For every peer group that is passed down one side 

of a given peer group, the next peer group passed down to that same peer group will go 

down the opposite side.  This ensures that the difference between number of children to 

the left or right of a given node is at most one
1
.  When an insertion is done, Algorithm 3 

is called with two parameters (the new peer group to be added to the tree, and the peer 

group identifier of the left of right child of the root (whichever side is being grown). 

                                                 
1
 If  the flag for which side to grow is tracked as a binary representation of an integer counting the 

number of nodes added to the tree, the LSB serves as the flag, with odd numbers on one side and even on 

the other.  If the number is even, the two sides have the same number of children, if odd, they differ by 1.  

When the number is a power of 2 minus 1, the tree is a complete tree. 
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Algorithm 3  Insert_Peer_Group Pseudocode  (PGNew, PGCur) 

1. //This procedure would be called initially at the root as described in Algorithm 2 

2. Procedure Insert_Peer_Group 

3.  Begin 

4.  If PGCur has < 2 children Then 

5.   PGCur claims parenthood of PGNew and toggles its growth flag. 

6.  Else 
7.   PGCur Reads it’s growth flag to determine which child to grow (PGC). 

8.   PGCur Toggles it’s growth flag. 

9.  End If 
10.  Insert_Peer_Group(PGNew, PGC) is called. 

11.  End Procedure Insert_Peer_Group 

 

3.2.1.3.  Removing Machines 

There are two different cases that must be handled for removing a machine from a 

peer group.  The two cases are that 1) the machine leaves gracefully and notifies its peer 

group that it is going offline, and 2) the machine goes offline without notification and 

stops responding to requests and log entries from the peer group.  For both cases, the only 

difference is at what point the machine is considered lost and the peer group analyzes if it 

has enough members to continue its existence.  In case 1 if a machine signals that it is 

going offline, a timer is started to give it time to reboot for maintenance and updating 

without having to rejoin the tree.  This will be called the  and should be 

configured based on desired network behavior.  Once the  has elapsed 

without the machine coming back online, the machine is considered lost and when it 

comes back, it will have to rejoin the tree.  Case 2 occurs when a machine fails to respond 

to other machines in the peer group within a certain timeframe called the  
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.  The  should be configured based on a specific 

network’s expectations of regular maintenance and system reboots.  After the member 

timeout expires, the machine is considered offline and the peer group will start a timer 

using the  to determine when the machine is considered lost. 

When a machine has been offline for the length of the , that 

machine’s peer group performs steps outlined in Algorithm 4. 

Algorithm 4  Peer_Group_Member_Timeout Pseudocode   

1. Procedure PG_Member_Timeout 

2.  Begin 

3.  If Current Peer Group has < n members Then 

4.   Current Peer Group notifies the root that it needs to be removed. 

5.  Else 
6.   Do Nothing. 

7.  End If 

8.  End Procedure PG__Member_Timeout  

 

3.2.1.4.  Removing Peer Groups 

Peer group removal also has two potential cases.  The first case is that the one of 

the peer group members signals the root to remove it since it does not have enough 

members, and the second is that the entire peer group goes offline simultaneously.  

Removing peer groups must be done carefully in order to ensure that the tree remains 

balanced.  To ensure the tree remains balanced for the first case, the root performs a 

traversal of the tree to find the peer group that was last added to the tree.  The traversal is 

done by checking the  and traversing the opposite child from the one 

indicated until a leaf node is found.  Every time the  is checked, it is also 
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toggled so that the next peer group to be added will end up in the same position as the 

leaf node that is found.  The steps for finding the leaf peer group are defined in  

Algorithm 5. 

Algorithm 5  Find_Leaf_PG Pseudocode   

1. Procedure Find_Leaf_PG 

2.  Begin 

3.  If Root Peer Group has < 2 children Then 

4.   Root Peer Group’s child is the leaf. 

5.  Else 
6.   Toggle Growth Flag. 

7.   Set PGS to child indicated by the Growth Flag 

8.   While PGS is not a leaf do 

9.    Send request to PGS for a leaf node. 

10.    If PGS has no children Then 

11.     PGS sends response that it is a leaf. 

12.    Else 
13.     PGS toggles it’s own growth flag. 

14.     PGS sends child indicated by growth flag to the Root. 

15.    End If 

16.   End While  

17.  End If 

18.  End Procedure Find_Leaf_PG 

A peer group swap between the leaf and the dying node is then performed as 

outlined in Algorithm 6. 
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Algorithm 6  Swap_Peer_Group Pseudocode   

1. Procedure Swap_Peer_Group 

2.  Begin 

3.  One machine is identified in each peer group as the coordinator for the swap. 

4.  The two coordinators exchange parent, children, and growth flag information. 

5.  The coordinators sync that information to the rest of their respective peer groups 

6.  The coordinators signal to each other that the distribution is complete and 

   confirmed. 

7.  The coordinators signal their peer groups to use the new information 

8.  The coordinators signal each other that the transfer is complete. 

9.  The coordinators signal the root that the swap is complete. 

10.  End Procedure Swap_Peer_Group 

Once the peer group swap has completed, the members of the dying peer group 

(which is now the leaf of the tree) each rejoin the network according to the add machine 

algorithm placing them in the root of the tree.  Removals must be done atomically with 

respect to creating new peer groups so that a new peer group will not be sent down the 

tree while a leaf is being found to facilitate a removal.  To ensure the atomic nature of 

removing peer groups, the root will not make any new peer groups while finding a leaf 

peer group and before receiving confirmation that the peer group swap has been 

completed.  It will also queue any other peer groups that need to be removed from the 

tree until the operation completes. 

The case of all machines in a peer group going offline simultaneously is more 

complex because it segments the tree.  To maintain the integrity of the tree, a heartbeat 

type signal is established between the peer groups.  Every few seconds, each machine in 

the peer group checks the status of one machine in each of the parent and children peer 

groups. A tree segmentation is noticed when either the parent of the dead peer group 

check their children or the children of the dead node check their parent.  When the parent 

of the dead node notices that a peer group has gone offline, it notifies the root node who 
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acknowledges it but waits for the children of the dead node (which are now the roots of 

segmented portions of the tree) to contact the root.  The children upon noticing that their 

parent is no longer responding lookup the root peer group and signal that they are the root 

for a segment of the tree.  Once the root peer group is notified that a segment of the tree 

has been located the steps shown in Algorithm 7 are performed. 

Algorithm 7  Repair_Tree Pseudocode   

1. Procedure Repair_Tree 

2.  Begin 

3.  The root peer group halts the growth of the current children. 

4.  Root peer group identifies current children and orphans that have contacted it as  

  temporary children 

5.  The growth flag for the root peer group is reset to the initial state. 

// At this state, the root peer group has temporary children, but no left or right child 

6.  While temporary children exist do 

7.   Find leaf node on one of the temporary children (Algorithm 5) 

8.   Each found leaf is removed from the temporary branch 

9.   Each found leaf is inserted to the tree according to Algorithm 3 using  

   the roots new left and right children. 

10.  End While 

11.  End Procedure Repair_Tree 

 

Algorithm 7 removes all peer groups from the branches of the tree that were 

disconnected and places them in new balanced branches off of the root peer group 

without having to perform any log redistribution.   

3.2.1.5.  Log Distribution 

Log distribution is performed at the peer group/machine level and does not 

involve machines outside of the peer group.  Under normal operations, as a log entry is 
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generated on a machine, it will be sent to the members of the peer group as if they were 

log servers themselves.  They then record the message.  

In the case of an interruption of service for a machine where it is considered 

offline but comes back within the window of time before it is forced to rejoin the 

network, the log entries that the machine missed are condensed to one “file” and then 

transferred in a BitTorrent type manner to the machine that went offline while the 

machine that went offline does the same for any log entries that it needs to distribute.  

Logs are condensed into easily distributable files that cover a specific configurable time 

interval.  When a system needs to be caught up or redistribution is performed, these 

consolidated log files are what is distributed and then the logs that have not been 

condensed are sent separately.  

The last piece of distribution is performed when a machine enters a new peer 

group (which includes joining the root node).  When log redistribution is performed, 

Algorithm 8 is used to synchronize each machine in the peer group. 

Algorithm 8  Distribute_All_Logs Pseudocode (M)  

1. // M is the machine to distribute logs from. 

2. Procedure Distribute_Log_Event 

3.  Begin 

4.  Create a list (Lm) of every machine that currently has entries on M. 

5.  For each machine(Mx) in Lm 

6.   If Mx is online and not in the current peer group Then 

7.    Delete entries for Mx 

8.   End If 

9.  End For 
10.  Create a file to be distributed that has all remaining log entries. 

11.  Distribute that file to all Peers. 

12.  End Procedure Distribute_Log_Event 

NOTE: File distribution should be done in an efficient peer to peer method such 

as BitTorrent that allows for asynchronous distribution of the file. 
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3.2.1.6.  Log Searches 

Searching the logs is performed utilizing the tree structure the peer groups are 

organized into.  The search can be performed from any machine on the network, and the 

searching machine is treated as if it was external to the tree.  While the query is traveling 

down the tree, the results are sent directly to the querying node without traversing the 

tree.  The searching machine can end up receiving results from more than one peer group 

and more than one machine, depending on the query that is sent out.  The query 

progresses along the steps in Algorithm 9. 

Algorithm 9  Search_Logs_Peer_Group Pseudocode (SM, Query, PGCurrent)  

1. Procedure Search_Logs_Peer_Group 

//Searching Machine (SM) initiates Search_Logs_Peer_Group(SM,Query, PGRoot) 

2.  Begin 

3.  PGCurrent determines the query result using Algorithm 10. 

4.  The PGCurrent sends SM the answer to that query and how many children it 

   sent the query to. 

5.  PGCurrent  Initiates Search_Logs_Peer_Group(SM, Query, PGChild) on all children 

6.  End Procedure Search_Logs_Peer_Group 

NOTE: Peer groups determine the answer the query according to Algorithm 10. 
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Algorithm 10  Search_Logs_Machine Pseudocode   

1. Procedure Search_Logs_Machine 

2.  A machine (M1) in the peer group receives a query 

3.  Begin 

4.  M1 sends the query to all peers 

5.  M1 queries its own logs and hashes the result 

// All other peers query their respective logs and hash the result 

// All other peers send the hash of the query result back to M1. 

6.  If all hashes match Then 

7.   M1 sends the results of its query to SM and flag that all members agree. 

8.  Else 

9.   M1 requests full results from all other peers 

10.   M1 receives all other results 

11.    M1 sends all results with which machine generated them to SM. 

12.  End If 

13.  End Procedure Search_Logs_Machine 

NOTES: Hashes are used to minimize the amount of information transferred 

when logs match.  All non-matching results are sent to SM to help minimize secondary 

searches due to mismatched logs. 

 

Algorithm 9 results in the SM receiving either a no results match and how many 

children a peer group has or a set of results and how many children the peer group passed 

the query to for each peer group.  Telling the SM how many children the search has been 

passed to allows the SM to know when the search is complete and give an estimation of 

how many results are pending.  The results are not sent up the tree because peer groups 

do not change places in the tree very often.  If log entries were sent up the tree, the 

amount of traffic that each peer group would have to transmit would grow exponentially 

based on how high it is in the tree.  This is because each node is going to have  

children below it where  is the number of full levels below the current node. 
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3.2.2. Refinement 

Since peer groups do not grow in size, any time a member goes offline, the rest of 

the peer group must be moved.  Since this causes extra work and movement in the tree, 

the topology will be modified to include a number of buffer machines that will attempt to 

minimize the impact of machines leaving a peer group. 

3.2.2.1.  Buffered Peer Groups 

The original topology creates peer groups at the minimum size ( ).  An effect of 

building peer groups at the minimum size is that every time a machine leaves a peer 

group, that peer group is going to remove itself from the network which will result in 

every other machine in that peer group performing a peer group change which is expected 

to be the most expensive operation for a peer group to perform.  In order to minimize the 

number of peer groups that get removed, a number of buffer machines is added to each 

peer group.  The optimization is done by instead of creating peer groups of size n, only 

creating them once there are  machines to put in a peer group where b is a 

percentage of extra machines to provide a peer group as a buffer. 

3.3.  Simulation 

In order to compare the non-buffered and buffered approaches against the 

standard central server topology, a simulation in MATLAB is used.  Various scenarios 

are outlined in this section describing how the system was tested. 
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3.3.1.  Tree/PG Simulations 

The Tree/Peer Group simulations focus on topology formation and maintenance 

where the peer groups are mostly considered to be atomic.  The network can grow and 

shrink by adding or removing individual machines, but most analysis is done on the 

organization of the peer groups and the effect this has on the tree.  The exception is the 

peer group changes which are tracked for each machine. 

3.3.1.1.  Random join/rejoin Event Scripts 

The simulations here are designed to be repeatable by creating pseudo-random 

event scripts and recording them so that different configurations, topologies and types of 

operations can be tested with the same random series of events.  The script is a matrix 

that has a column for each machine on the network and a row for each time-step.  The 

matrices are created by assigning each cell a random number from a uniform distribution 

that represents the probability of the machine changing states.  The scripts will be 

populated and show when each machine joins and leaves the network to allow multiple 

machines to leave or join the network at the same time.  The simulation prioritizes actions 

such that from highest to lowest probability the actions are: machines leaving, peer group 

changes, and machines joining.  All actions are resolved before the simulation goes to the 

next step. 

The parameters that are kept the same for all of the scenarios are listed in Table 2. 
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Table 2 Simulation parameters that are the same for all scenarios. 

 10000 

 3000 

 4,6,8,10 

 0,.25,.5 
 

 

The  and  parameters are combined to perform a full factorial experiment so that every 

chosen  parameter is run with every chosen  parameter. 

3.3.1.2.  Event Script Parameters 

To determine what a network would look like in the morning when most people 

are arriving at work, data was collected with the help of the communications squadron 

from the Air Force Institute of Technology from their network for analysis.  The data 

used is from January 19, 2010 and contained information on what time machines were 

logged in to and how long they had been on.  Due to AFIT scheduling, the morning was 

defined as the first login of the day until 1055 hours.  In order to simplify analysis, this 

time was divided in to 5-minute blocks, and it was observed that an average of 0.6657% 

of machines all machines were logged in to during each 5 minute block.  This was used to 

set  to 0.006657.  It was also observed that of all the machines that were logged in to, 

17% of them were rebooted.  The percentage of machines that rebooted was used to 

configure  to be  or 0.00113543.   
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3.4.  Evaluation Techniques 

The evaluation of the approach will focus on measuring the factors that impact 

search complexity, log redundancy, event throughput and network usage and the fairness 

of the system and to compare the baseline of a central server against the new distributed 

topologies. 

3.4.1.  Search Complexity 

Search complexity looks at the number of peer groups in the network and how 

many responses an administrator trying to query the logs will have to receive before 

having all of the results.  This is determined by the number of peer groups and how many 

machines are online/offline at the time of the query.  Searches traverse the entire tree and 

require every peer group to send a response to the searching machine.  In order to 

measure search complexity, the average number of peer groups in the network will be 

measured.  The worst case for any topology is having every peer group at the minimum 

size which will result in the searching machine receiving  responses.  The best case 

for a network is when all peer groups are at the max size which results in  responses. 

3.4.2.  Redundancy 

Redundancy for this topology is a measurement of how many copies of a log 

entry exist.  This is specifically measured by recording the size of all the peer groups 



 

34 

which is how many copies of each entry exist and how many machines would have to go 

offline simultaneously to cause the loss of the log entries.  This will be compared to a 

central server where logs primarily exist in one location.  The best and worst case can be 

easily determined by looking at  and  .   

3.4.3.  Event Throughput and Network Usage 

This measures the maximum amount of traffic that any machine in the network 

will be expected to handle as a function of peer group size.  This will be compared to the 

throughput on the central server that must handle all of the logging traffic.  The proposed 

topology has two effects: 1) At the machine level, total traffic from logging is expected to 

grow linearly with a function of peer group size, and 2)The actual traffic that is going on 

inside the peer group will increase quadratically with peer group size.  Logging traffic is 

calculated with respect to , and is one event being passed from a machine to the peer 

group.  Depending on the criticality of the logs on the network, different exchange 

methods could be implemented: unreliable UDP transfer, reliable TCP transfer, or 

potentially an encrypted SSL transfer.  Each method would have different levels of 

traffic, but would result in a constant increase in traffic that has  as the dominant factor.  

The minimum traffic a machine will see exchanging one log event is  and 

the maximum is .  The total logging traffic in a peer group for one log event 

is  which gives us a peer group minimum of  and a maximum of 

.  The entire network logging traffic to be determined to be  

.   and  are measured during the simulation, but the minimum 
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logging traffic on the network can be calculated by substituting variables and using the 

equation .  The worst case logging traffic is determined by . 

3.4.4.  Fairness  

Fairness is evaluated to ensure that regardless of a machine’s peer group 

membership and the peer group’s location in the tree, it is not required to do significantly 

more work than the rest of the machines on the network.  One purpose of this is making 

sure that peer group changes happen approximately equally to all machines in the 

network.  A second purpose of this is ensuring that searches do not require peer groups to 

do work for their children.  The second measure has been minimized by the design of the 

topology, and the first is measured by tracking how many times machines have to change 

peer groups.  Changing peer groups is the primary measurement because log 

redistribution is the most expensive operation and is primarily performed when peer 

groups are created, or a peer group is given new members (adding members only happens 

to the root).  This is why machines that have been in the root node the longest are moved 

to the newly created peer groups first.  To evaluate fairness, the minimum number of peer 

group changes is subtracted from the maximum number of peer group changes.  This 

shows the difference between the machine that experienced the best treatment (low 

number of peer group changes) and the worst treatment (the highest number of peer 

group changes).  It is expected that machines will experience an average of at least two 

peer group changes every time they join the network, because when a machine joins, it 
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will “change” peer groups to the root, and once enough machines have joined, change 

peer groups to a new peer group that is sent down the tree.   

3.5.  Summary 

The next chapter analyzes the results of simulation runs and compares the 

networks to theoretical best and worst case scenarios to see how the network performs as 

machines are added and removed from the system. 
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4.  Analysis and Results 

This chapter presents the results of the simulation of the mechanism described in 

Chapter 3.  Section 4.1 looks at analytical performance of a logging infrastructure that is 

set up with a single central server.  It is configured to match the proposed topologies and 

is simulated with 10,000 machines on the network.  Section 4.2 presents the results of a 

network simulated with 10,000 machines organized in to a tree of non-buffered peer 

groups.  Section 4.3 presents the results of a network simulated with 10,000 machines 

organized in to a tree of buffered peer groups.  Section 4.4 compares the performance of 

each of the topologies using the measurements defined in Chapter 3.  

4.1.  Central Server Performance 

In order to have an established baseline to compare with, the theoretical 

performance of a network logging infrastructure based on sending all logs to a central 

server is presented below.  The network is a basic setup where every machine sends log 

entries to the central server.  A simple representation of this is presented in Figure 2. 
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Figure 2 A sample logging infrastructure with a central log server and 25 client machines.  

 

4.1.1.  Search Complexity 

The central server topology provides extremely efficient searching of the log files.  

All of the logs for the network are stored locally to the central server.  From a network 

perspective, the query is a O(1) lookup off the local storage.   

4.1.2.  Redundancy 

The central server topology has two different cases for message redundancy.  In 

the best case, all log entries arrive at the log server and are recorded successfully.  As 

long as the logs on the other machines in the network remain intact, two copies of each 

log entry will exist, one at the central server and one at the originating machine.  

However, since industry standard syslog operates over UDP with no confirmations, there 
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is no guarantee that every log entry sent to the log server will arrive and get stored.  At 

the client machine, settings can be configured to delete entries after a certain amount of 

time, when they reach a certain size, or to have a maximum size and overwrite the older 

entries.  In addition, a threat to the network often works to compromise the system logs in 

order to hide the fact that he exists.  These conditions make it so that it cannot be 

guaranteed that a log entry will still exist on the client machine when it is needed.   

Due to the operating characteristics of the central server described above, a best 

case of two copies of a log entry and a worst case of zero copies of a log entry can exist 

on the network.  It is expected that there will normally exist two copies of a message. 

4.1.3.  Event throughput and network usage  

For the central server topology, there are two machine types to evaluate.  The first 

machine type is a normal client machine on the network.  Each machine on the network 

will generate a expected number of events per unit time .  This means that each machine 

on the network will have to send messages to the central server at a rate of .  The second 

machine type is the server receiving messages.  This machine will be receiving messages 

at a rate or  for each of  machines on the network.  This translates in to being able to 

receive and store messages at a rate of . 

4.1.4.  Fairness 

For the central server, there are the same two types of machines from above.  

There will be  machines that are sending messages at a rate of  and one server that 
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receives messages at a rate of .  This shows that the number of messages that the 

server must handle increases linearly with  and is . 

4.1.5.  Summary 

The analysis above gives us the characteristics for a central server based logging 

topology shown in Table 3. 

Table 3 Summary of metrics for a central server based logging topology where N is the 

number of machines on the network and R is the rate at which they create and send log 

entries. 

Searching  the logs O(1) local lookup 

Log entry redundancy best case 2 

Log entry redundancy worst case 0 

Event processing best case O(1), equal to R 

Event processing worst case O(N), equal to R*N  

Fairness – Best case N machines only sending messages 

Fairness – Worst-case 1 machine receiving R*N messages 

Network Traffic – Client machine R messages being sent per unit time 

Network Traffic – Server Machine Receiving R*N messages per unit time 
 

4.2.  Tree of Non-Buffered Peer Groups 

The first new mechanism to be analyzed is the tree of non-buffered peer groups 

described in Chapter 3.   
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4.2.1.  Search Complexity 

The search complexity of the peer groups is based on the size of the tree structure 

formed by the methodology described in Chapter 3.  The measurements to quantify the 

search complexity of the tree are also described in Chapter 3.  The mean number of peer 

groups in the network for the non-buffered topology is shown in  

Figure 3.  The mean is centered on the x marks with a 95% confidence interval from 15 

simulations hash marked above and below each x. 

 

Figure 3: Mean Number of Peer Groups for Scenario 1. 

4.2.2.  Redundancy 

The redundancy of the messages is directly related to the peer group size as 

described in Chapter 3.  As the topology is designed, the non-buffered design ensures that 
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every peer group is size  except for the root node.  Since the root is designed and was 

observed to be the largest node in the tree.  Every machine except members of the root 

had a redundancy of . 

4.2.3.  Event throughput and network usage 

Distributing all of the logs on the network to multiple places is expected to 

increase traffic on the network, and the traffic that most machines on the network will 

see.  The more members a peer group has, the more traffic that the members will be 

having to process.  The machines handling the most traffic will be the machines in the 

root peer group.  Figure 4 plots the mean traffic expected to be processed by a machine in 

the root peer group, and displays a 95% confidence interval for the samples.  The 

confidence intervals grow as  is increased because the non-buffered topology root node 

varies in size from  to  in size.   
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Figure 4: The maximum events per log event that any machine on the network will receive 

compared with a central server for the non-buffered topology. 

 

The second measurement of traffic is the traffic on the entire network.  The values 

shown in Figure 5 shown values are the average peer group size for each value of  along 

with the expected peer group traffic.   
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Figure 5: This graph compares the events per time that are on the network as a function of 

PG size for this topology. 

4.2.4.  Fairness 

Fairness as described in Chapter 3 is measured by the difference in number of 

peer group changes between the machine with the most changes and the least changes.  

The data averaged over the 15 runs with a 95% confidence interval to predict the next 

simulation’s fairness is shown in Figure 6. 
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4.3. Tree of Buffered Peer Groups 

The second topology to be analyzed is the tree of buffered peer groups described 

in Chapter 3.   

 

Figure 6: Average number of peer group changes per machine as a function of peer 

group size. 
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4.3.1.  Search Complexity 

The search complexity of the peer groups is based on the size of the tree structure 

formed by the methodology described in Chapter 3.  The measurements to quantify the 

search complexity of the tree are also described in Chapter 3.  The mean number of peer 

groups in the network for the buffered topology is shown in  

Figure 3.  The mean is centered on the x marks with a 95% Confidence interval hash 

marked above and below each x. 

 

Figure 7: Mean Number of Peer Groups with buffered peer groups. 
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4.3.2.  Redundancy 

The redundancy of the messages is directly related to the peer group size as 

described in Chapter 3.  A set of histograms for the proportion of peer group sizes for 

each configuration is shown in Figure 8.   In the bottom two graphs, there were data 

points that were greater than sixteen, but all of those samples were for the root PG.  Since 

there is only one root peer group, and higher is better, that data is left out of Figure 8. 
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Figure 8: Average Peer Group Size for Scenario 1. 
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4.3.3.  Event throughput and network usage 

Distributing all of the logs on the network to multiple places is expected to 

increase traffic on the network, and the traffic that most machines on the network will 

see.  The more members a peer group has, the more traffic that the members will be 

having to process.  The machines handling the most traffic will be the machines in the 

root peer group.  Figure 9 plots the mean traffic expected to be processed by a machine in 

the root peer group, and displays a 95% confidence interval for the samples. 

 

Figure 9:This graph compares the maximum events per log event that any machine on the 

network will receive compared with a central server for this topology. 
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The second measurement of traffic is the traffic on the entire network.  The shown 

values are the average peer group size for each value of  and  along with the expected 

peer group traffic.   

 

 

Figure 10: This graph compares the events per time that are on the network as a function of 

PG size for this topology. 

 

n=4,b=.25 b=.5 n=6,b=.25 b=.5 n=8,b=.25 b=.5 n=10,b=.25 b=.5
2

3

4

5

6

7

8

9

10
x 10

4 Average Logging Traffic for the Entire Network

N
u
m

b
e
r 

o
f 

M
e
s
s
a
g
e
s
 p

e
r 

L
o
g
 E

v
e
n
t 

(i
n
 1

0
,0

0
0
s
)



 

51 

4.3.4.  Fairness 

Fairness as described in Chapter 3 is measured by the difference in number of 

peer group changes between the machine with the most changes and the least changes.  

The data averaged over the 15 runs with a 95% confidence interval to predict the next 

simulation’s fairness is shown in Figure 11.  

 

 

Figure 11: Averaged number of peer group changes that machines had to make with 

various  and  values. 

n=4,b=.25 b=.5 n=6,b=.25 b=.5 n=8,b=.25 b=.5 n=10,b=.25 b=.5
14

16

18

20

22

24

26

M
e
a
n
 N

u
m

b
e
r 

o
f 

P
e
e
r 

G
ro

u
p
 C

h
a
n
g
e
s
 p

e
r 

M
a
c
h
in

e

Peer Group Changes



 

52 

4.4. Performance Analysis  

4.4.1. Search Complexity 

For comparing the search complexity of the different topologies, the central server 

is the most efficient, and provides the best performance.  This is expected because all of 

the logs being searched are on one machine.  For the distributed topologies, the buffered 

groups were better for searching because there were fewer peer groups when comparing 

topologies with the same  parameter. 

4.4.2. Redundancy 

The redundancy of the logs was found to be best in the buffered peer group 

topology.  The reason for this topology being the best is that it ends up with slightly 

larger peer groups because of the buffer which results in extra copies of the logs being on 

the network.  The non-buffered topology performed second best and the central server 

was the worst. 

4.4.3. Network Traffic 

For the worst case traffic that any individual machine must handle, the non-

buffered topology had the most traffic since it had the smallest maximum peer group size 

in the root.  The buffered peer group topology was close behind it having an only slightly 
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larger root peer group.  The central server topology is the worst for this metric because 

one machine must receive traffic from every machine on the network. 

The overall traffic on the network was found to be larger on both of the 

distributed topologies; however this was expected due to the nature of distributing the 

logs to multiple places.  The overall traffic on the network is still increasing 

proportionally to the size of the network, and this should not be a problem on a standard 

wired network. 

4.4.4 Fairness 

The fairness of the system found that the buffered peer groups performed better 

than the non-buffered peer groups.  The non-buffered topology had to move all members 

of a peer group every time a single member goes offline.  The buffer provided several 

extra machines that had to go offline before the rest of the peer group had to be moved, 

and significantly improved the network performance. 
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5.  Conclusions and Recommendations 

This chapter summarizes the findings and results presented in Chapter 4.  The 

results are used as a basis to determine future areas that need to be researched.  The goal 

of this research was to propose a solution to providing an efficient way to have network 

logs distributed between machines generating logs instead of sending them all to a central 

repository.  A system was proposed in Chapter 3 to meet this goal, and portions of it 

tested in Chapter 4. 

5.1.  Conclusion and Findings 

The simulations showed that the proposed system has several very desirable 

qualities.  The system establishes groups of machines that synchronize network traffic 

and set up a system where the amount of traffic that any individual machine on the 

network must process is independent of the size of the network.  In the process of setting 

up this log distribution, the amount of traffic across the whole network is greater than that 

in the central server model, but it still grows at a rate proportional to the size of the 

network (linear growth).   

Two different topologies were tested.  The buffered peer group topology showed 

an improvement in all desired characteristics except for total network traffic volume.  The 

increase in traffic was seen to be insignificant compared to the improvements in other 

measurements.    
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5.2.  Future Work 

Some of the areas of this research that need further work, are described below.  

For this topology, the amount of traffic within a peer group is a quadratic function of the 

peer group size.  This would generally not be significant when machines are on the same 

physical network segment, but research to test what happens when machines are on 

different physical segments should be done.  It may be necessary to ensure that members 

of a peer group are on the same network segment or subnet to prevent quadratic growth 

of traffic throughout the entire network. 

The simulations performed for this research were not able to explore performance 

of the system on actual hardware.  Research to determine how long a query takes and 

how often queries can be performed needs to be measured on higher fidelity models (such 

as NS2 or OPNET) or possibly on actual hardware.   

Research for streaming of “live” content via distributed topologies such as 

BitTorrent would apply to this problem.   

The number of copies of a log entry that would be stored on the network when 

compared to a central server model (depending on what the  parameter is configured at) 

should be tested and compared.  In the event of a discrepancy between the copies of the 

logs, the originator would be notified of the discrepancy which is a service not performed 

by a central server.   
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